Physicochemical Characterization of Hydroxyapatite Hybrids with Meloxicam for Dissolution Rate Improvement

Author:

Maggi Lauretta1ORCID,Friuli Valeria1ORCID,Cerea Beatrice2ORCID,Bruni Giovanna34ORCID,Berbenni Vittorio3,Bini Marcella345ORCID

Affiliation:

1. Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy

2. Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy

3. Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy

4. Consorzio per i Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy

5. National Reference Centre for Electrochemical Energy Storage (GISEL), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy

Abstract

Organic–inorganic hybrids represent a good solution to improve the solubility and dissolution rates of poorly soluble drugs whose number has been increasing in the last few years. One of the most diffused inorganic matrices is hydroxyapatite (HAP), which is a biocompatible and osteoconductive material. However, the understanding of the hybrids’ functioning mechanisms is in many cases limited; thus, thorough physicochemical characterizations are needed. In the present paper, we prepared hybrids of pure and Mg-doped hydroxyapatite with meloxicam, a drug pertaining to the Biopharmaceutical Classification System (BCS) class II, i.e., drugs with low solubility and high permeability. The hybrids’ formation was demonstrated by FT-IR, which suggested electrostatic interactions between HAP and drug. The substitution of Mg in the HAP structure mainly produced a structural disorder and a reduction in crystallite sizes. The surface area of HAP increased after Mg doping from 82 to 103 m2g−1 as well as the pore volume, justifying the slightly high drug amount adsorbed by the Mg hybrid. Notwithstanding the low drug loading on the hybrids, the solubility, dissolution profiles and wettability markedly improved with respect to the drug alone, particularly for the Mg doped one, which was probably due to the main distribution of the drug on the HAP surface.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3