1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: a system for large-scale Machine Learning (2016). arXiv:1605.08695
2. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)
3. Blum, M., Riedmiller, M.: Electricity demand forecasting using Gaussian processes. In: Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)
4. Bonilla, E.V., Krauth, K., Dezfouli, A.: Generic inference in latent Gaussian process models (2018). arXiv:1609.00577
5. Chee, J., Toulis, P.: Convergence diagnostics for stochastic gradient descent with constant step size (2017). https://doi.org/10.48550/ARXIV.1710.06382