Author:
Argiento Raffaele,Bianchini Ilaria,Guglielmi Alessandra
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science
Reference39 articles.
1. Argiento, R., Guglielmi, A., Pievatolo, A.: Bayesian density estimation and model selection using nonparametric hierarchical mixtures. Comput. Stat. Data Anal. 54, 816–832 (2010)
2. Argiento, R., Cremaschi, A., Guglielmi, A.: A “density-based” algorithm for cluster analysis using species sampling Gaussian mixture models. J. Comput. Graph. Stat. 23, 1126–1142 (2014)
3. Barrios, E., Lijoi, A., Nieto-Barajas, L.E., Prünster, I.: Modeling with normalized random measure mixture models. Stat. Sci. 28, 313–334 (2013)
4. Bianchini, I.: A Bayesian nonparametric model for density and cluster estimation: the $$\varepsilon $$ ε -NGG mixture model. Tesi di laurea magistrale, Ingegneria Matematica, Politecnico di Milano (2014a)
5. Bianchini, I.: A new finite approximation for the NGG mixture model: an application to density estimation. In: The Contribution of Young Researchers to Bayesian Statistics: Proceedings of BAYSM2014. Springer, Berlin (2015)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献