Clustering blood donors via mixtures of product partition models with covariates

Author:

Argiento Raffaele1ORCID,Corradin Riccardo2ORCID,Guglielmi Alessandra3ORCID,Lanzarone Ettore4ORCID

Affiliation:

1. Department of Economics, University of Bergamo , via dei Caniana 2, 24127 Bergamo, Italy

2. School of Mathematical Sciences, University of Nottingham , University Park, NG72RD Nottingham , United Kingdom

3. Department of Mathematics, Politecnico di Milano , piazza Leonardo da Vinci 32, 20133 Milano, Italy

4. Department of Management, Information and Production Engineering, University of Bergamo , via Albert Einstein 2, 24044 Dalmine, Italy

Abstract

ABSTRACT Motivated by the problem of accurately predicting gap times between successive blood donations, we present here a general class of Bayesian nonparametric models for clustering. These models allow for the prediction of new recurrences, accommodating covariate information that describes the personal characteristics of the sample individuals. We introduce a prior for the random partition of the sample individuals, which encourages two individuals to be co-clustered if they have similar covariate values. Our prior generalizes product partition models with covariates (PPMx) models in the literature, which are defined in terms of cohesion and similarity functions. We assume cohesion functions that yield mixtures of PPMx models, while our similarity functions represent the denseness of a cluster. We show that including covariate information in the prior specification improves the posterior predictive performance and helps interpret the estimated clusters in terms of covariates in the blood donation application.

Funder

European Commission

Publisher

Oxford University Press (OUP)

Reference43 articles.

1. On the unification of families of skew-normal distributions;Arellano-Valle;Scandinavian Journal of Statistics,2006

2. Bayesian inference for skew-normal linear mixed models;Arellano-Valle;Journal of Applied Statistics,2007

3. A blocked Gibbs sampler for NGG-mixture models via a priori truncation;Argiento;Statistics and Computing,2015

4. Is infinity that far? A Bayesian nonparametric perspective of finite mixture models;Argiento;Annals of Statistics,2022

5. Bayesian density estimation and model selection using nonparametric hierarchical mixtures;Argiento;Computational Statistics & Data Analysis,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3