Scalable methods for computing sharp extreme event probabilities in infinite-dimensional stochastic systems

Author:

Schorlepp TimoORCID,Tong ShanyinORCID,Grafke TobiasORCID,Stadler GeorgORCID

Abstract

AbstractWe introduce and compare computational techniques for sharp extreme event probability estimates in stochastic differential equations with small additive Gaussian noise. In particular, we focus on strategies that are scalable, i.e. their efficiency does not degrade upon temporal and possibly spatial refinement. For that purpose, we extend algorithms based on the Laplace method for estimating the probability of an extreme event to infinite dimensional path space. The method estimates the limiting exponential scaling using a single realization of the random variable, the large deviation minimizer. Finding this minimizer amounts to solving an optimization problem governed by a differential equation. The probability estimate becomes sharp when it additionally includes prefactor information, which necessitates computing the determinant of a second derivative operator to evaluate a Gaussian integral around the minimizer. We present an approach in infinite dimensions based on Fredholm determinants, and develop numerical algorithms to compute these determinants efficiently for the high-dimensional systems that arise upon discretization. We also give an interpretation of this approach using Gaussian process covariances and transition tubes. An example model problem, for which we provide an open-source python implementation, is used throughout the paper to illustrate all methods discussed. To study the performance of the methods, we consider examples of stochastic differential and stochastic partial differential equations, including the randomly forced incompressible three-dimensional Navier–Stokes equations.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3