Two-layered fuzzy logic-based model for predicting court decisions in construction contract disputes
Author:
Publisher
Springer Science and Business Media LLC
Subject
Law,Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10506-021-09281-9.pdf
Reference38 articles.
1. Arditi D, Oksay FE, Tokdemir OB (1998) Predicting the outcome of construction litigation using neural networks. Comput Aided Civ Infrastruct Eng 13(2):75–81
2. Arditi D, Pulket T (2005) Predicting the outcome of construction litigation using boosted decision trees. J Comput Civ Eng 19(4):387–393
3. Arditi D, Pulket T (2010) Predicting the outcome of construction litigation using an integrated artificial intelligence model. J Comput Civ Eng 24(1):73–80
4. Arditi D, Tokdemir OB (1999) Comparison of case-based reasoning and artificial neural networks. J Comput Civ Eng 13(3):162–169
5. Besold TR, Kühnberger K-U (2015) Towards integrated neural–symbolic systems for human-level AI: two research programs helping to bridge the gaps. Biol Inspired Cogn Archit 14:97–110
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forecasting the outcomes of construction contract disputes using machine learning techniques;Engineering, Construction and Architectural Management;2024-09-10
2. Industry 4.0 and Construction Contract Management: A Bibliometric Survey;Journal of Legal Affairs and Dispute Resolution in Engineering and Construction;2024-08
3. Development of an Integrated Hybrid Risk Assessment System for Construction Disputes during the Preconstruction Phase Using the Delphi Method;Journal of Construction Engineering and Management;2024-07
4. Digital Technologies for Preventing, Mitigating, and Resolving Contractual Disagreements in the AEC Industry: A Systematic Literature Review;Journal of Construction Engineering and Management;2024-06
5. Prediction of Flexural Strength with Fuzzy Logic Approach for Fused Deposition Modeling of Polyethylene Terephthalate Glycol Components;Journal of Materials Engineering and Performance;2024-02-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3