Forecasting the outcomes of construction contract disputes using machine learning techniques

Author:

Un BuseORCID,Erdis ErcanORCID,Aydınlı SerkanORCID,Genc Olcay,Alboga Ozge

Abstract

PurposeThis study aims to develop a predictive model using machine learning techniques to forecast construction dispute outcomes, thereby minimizing economic and social losses and promoting amicable settlements between parties.Design/methodology/approachThis study develops a novel conceptual model incorporating project characteristics, root causes, and underlying causes to predict construction dispute outcomes. Utilizing a dataset of arbitration cases in Türkiye, the model was tested using five machine learning algorithms namely Logistic Regression, Support Vector Machines, Decision Trees, K-Nearest Neighbors, and Random Forest in a Python environment. The performance of each algorithm was evaluated to identify the most accurate predictive model.FindingsThe analysis revealed that the Support Vector Machine algorithm achieved the highest prediction accuracy at 71.65%. Twelve significant variables were identified for the best model namely, work type, root causes, delays from a contractor, extension of time, different site conditions, poorly written contracts, unit price determination, penalties, price adjustment, acceptances, delay of schedule, and extra payment claims. The study’s results surpass some existing models in the literature, highlighting the model’s robustness and practical applicability in forecasting construction dispute outcomes.Originality/valueThis study is unique in its consideration of various contract, dispute, and project attributes to predict construction dispute outcomes using machine learning techniques. It uses a fact-based dataset of arbitration cases from Türkiye, providing a robust and practical predictive model applicable across different regions and project types. It advances the literature by comparing multiple machine learning algorithms to achieve the highest prediction accuracy and offering a comprehensive tool for proactive dispute management.

Publisher

Emerald

Reference80 articles.

1. Understanding disputes in modular construction projects: key common causes and their associations;Journal of Construction Engineering and Management,2022

2. Construction claims prediction using ANN models: a case study of the Indian construction industry;International Journal of Construction Management,2021

3. B2B dispute resolution infographic;American Arbitration Association,2021

4. B2B dispute resolution infographic;American Arbitration Association,2022

5. Effective management strategies for construction contract disputes;International Journal of Building Pathology and Adaptation,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3