LINC01013 Is a Determinant of Fibroblast Activation and Encodes a Novel Fibroblast-Activating Micropeptide
-
Published:2022-06-27
Issue:1
Volume:16
Page:77-85
-
ISSN:1937-5387
-
Container-title:Journal of Cardiovascular Translational Research
-
language:en
-
Short-container-title:J. of Cardiovasc. Trans. Res.
Author:
Quaife N. M., Chothani S., Schulz J. F., Lindberg E. L., Vanezis K., Adami E., O’Fee K., Greiner J., Litviňuková M., van Heesch S., Whiffin N., Hubner N., Schafer S., Rackham O., Cook S. A., Barton P. J. R.ORCID
Abstract
AbstractMyocardial fibrosis confers an almost threefold mortality risk in heart disease. There are no prognostic therapies and novel therapeutic targets are needed. Many thousands of unannotated small open reading frames (smORFs) have been identified across the genome with potential to produce micropeptides (< 100 amino acids). We sought to investigate the role of smORFs in myocardial fibroblast activation.Analysis of human cardiac atrial fibroblasts (HCFs) stimulated with profibrotic TGFβ1 using RNA sequencing (RNA-Seq) and ribosome profiling (Ribo-Seq) identified long intergenic non-coding RNA LINC01013 as TGFβ1 responsive and containing an actively translated smORF. Knockdown of LINC01013 using siRNA reduced expression of profibrotic markers at baseline and blunted their response to TGFβ1. In contrast, overexpression of a codon-optimised smORF invoked a profibrotic response comparable to that seen with TGFβ1 treatment, whilst FLAG-tagged peptide associated with the mitochondria.Together, these data support a novel LINC01013 smORF micropeptide-mediated mechanism of fibroblast activation.
Graphical Abstract
TGFβ1 stimulation of atrial fibroblasts induces expression of LINC01013, whose knockdown reduces fibroblast activation. Overexpression of a smORF contained within LINC01013 localises to mitochondria and activates fibroblasts
Funder
Fondation Leducq NIHR Imperial Biomedical Research Centre Imperial College Academic Health Science Centre Rosetrees and Stoneygate Foundation Deutsches Zentrum für Herz-Kreislaufforschung Bundesministerium für Bildung und Forschung Medical Research Council Cardiovascular Research Centre, Royal Brompton and Harefield Hospitals
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Cardiology and Cardiovascular Medicine,Pharmaceutical Science,Genetics,Molecular Medicine
Reference48 articles.
1. Gulati, A., Japp, A. G., Raza, S., Halliday, B. P., Jones, D. A., Newsome, S., Prasad, S. K. (2018). Absence of myocardial fibrosis predicts favorable long-term survival in new-onset heart failure. Circulation: Cardiovascular Imaging, 11(9), e007722. https://doi.org/10.1161/CIRCIMAGING.118.007722 2. Burstein, B., & Nattel, S. (2008). Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. Journal of the American College of Cardiology, 51(8), 802–9. https://doi.org/10.1016/j.jacc.2007.09.064 3. Rockey, D. C., Bell, P. D., & Hill, J. A. (2015). Fibrosis — A common pathway to organ injury and failure. New England Journal of Medicine, 372(12), 1138–49. https://doi.org/10.1056/nejmra1300575 4. Heymans, S., González, A., Pizard, A., Papageorgiou, A. P., Lõpez-Andrés, N., Jaisser, F., Díez, J. (2015). Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential. European Journal of Heart Failure, 17(8), 764–71. https://doi.org/10.1002/ejhf.312 5. Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Doetschman, T. (1992). Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–9. https://doi.org/10.1038/359693a0
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|