Local climate at breeding colonies influences pre-breeding arrival in a long-distance migrant

Author:

Lopez-Ricaurte Lina,Hernández-Pliego Jesús,García-Silveira Daniel,Bermejo-Bermejo Ana,Casado Susana,Cecere Jacopo G.,de la Puente Javier,Garcés-Toledano Fernando,Martínez-Dalmau Juan,Morganti Michelangelo,Ortega Alfredo,Rodríguez-Moreno Beatriz,Rubolini Diego,Sarà Maurizio,Bustamante JavierORCID

Abstract

AbstractThe annual cycles of long-distance migrant species are synchronized with the local climatic conditions at their breeding areas, as they impact the availability of food resources. A timely arrival of individuals to the breeding grounds is crucial for achieving high fitness. Variation in factors influencing timing, including climate, may thus impact the life history of individuals. We studied between-individual variation in migration timing, in particular how local breeding climate influences arrival time and how early-arriving individuals achieve a timely arrival. We tracked individual Lesser Kestrel (Falco naumanni) with GPS tags across a gradient of latitude (37°–42° N) and longitude (6.5° W–16.5° E). Arrival time was influenced by the breeding latitude, the breeding longitude, and the local temperature, without any apparent influence of sex. The time of arrival at the breeding grounds was 6 days later for every degree increase in latitude and 2 days later for every degree increase in longitude. Lesser Kestrels from southwestern colonies achieve earlier arrival than conspecifics breeding at northeastern colonies, mostly due to earlier departure from their non-breeding grounds. While we found some effects of travel speed and stopover duration on arrival date, the latter was primarily influenced by food abundance and wind conditions en route. The large effect of departure date from West Africa on arrival date, relative to the more moderate influence of stopover duration close to breeding colonies, supports the idea that geographically uneven climate change may negatively affect fitness via ecological mismatches in the breeding area.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3