A Precise Geoid Model for Africa: AFRgeo2019

Author:

Abd-Elmotaal Hussein A.,Kühtreiber Norbert,Seitz Kurt,Heck Bernhard

Abstract

AbstractIn the framework of the IAG African Geoid Project, an attempt towards a precise geoid model for Africa is presented in this investigation. The available gravity data set suffers from significantly large data gaps. These data gaps are filled using the EIGEN-6C4 model on a 15× 15 grid prior to the gravity reduction scheme. The window remove-restore technique (Abd-Elmotaal and Kühtreiber, Phys Chem Earth Pt A 24(1):53–59, 1999; J Geod 77(1–2):77–85, 2003) has been used to generate reduced anomalies having a minimum variance to minimize the interpolation errors, especially at the large data gaps. The EIGEN-6C4 global model, complete to degree and order 2190, has served as the reference model. The reduced anomalies are gridded on a 5× 5 grid employing an un-equal weight least-squares prediction technique. The reduced gravity anomalies are then used to compute their contribution to the geoid undulation employing Stokes’ integral with Meissl (Preparation for the numerical evaluation of second order Molodensky-type formulas. Ohio State University, Department of Geodetic Science and Surveying, Rep 163, 1971) modified kernel for better combination of the different wavelengths of the earth’s gravity field. Finally the restore step within the window remove-restore technique took place generating the full gravimetric geoid. In the last step, the computed geoid is fitted to the DIR_R5 GOCE satellite-only model by applying an offset and two tilt parameters. The DIR_R5 model is used because it turned out that it represents the best available global geopotential model approximating the African gravity field. A comparison between the geoid computed within the current investigation and the existing former geoid model AGP2003 (Merry et al., A window on the future of geodesy. International Association of Geodesy Symposia, vol 128, pp 374–379, 2005) for Africa has been carried out.

Publisher

Springer Berlin Heidelberg

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3