Chazy-Type Asymptotics and Hyperbolic Scattering for the n-Body Problem
Author:
Funder
Division of Mathematical Sciences
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mathematics (miscellaneous),Analysis
Link
https://link.springer.com/content/pdf/10.1007/s00205-020-01542-2.pdf
Reference20 articles.
1. Alekseev, V.M.: Final motions in the three-body problem and symbolic dynamics. Uspekhi Mat. Nauk, 36(4(220)):161–176, 248, 1981
2. Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations, volume 250 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 2nd edn, Springer, New York, 1988. Translated from the Russian by Joseph Szücs [József M. Szűcs]
3. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics, volume 3 of Encyclopaedia of Mathematical Sciences. 3rd edn, Springer, Berlin, 2006. [Dynamical systems. III], Translated from the Russian original by E. Khukhro
4. Brušlinskaja, N.N.: A finiteness theorem for families of vector fields in the neighborhood of a singular point of Poincaré type. Funkcional. Anal. i Priložen. 5(3), 10–15, 1971
5. Chazy, J.: Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment. Ann. Sci. École Norm. Sup. (3), 39:29–130, 1922. classification of final motions.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Compactification of the Energy Surfaces for $$n$$ Bodies;Regular and Chaotic Dynamics;2023-10
2. Existence of Hyperbolic Motions to a Class of Hamiltonians and Generalized N-Body System via a Geometric Approach;Archive for Rational Mechanics and Analysis;2023-06-12
3. On the singular Weinstein conjecture and the existence of escape orbits for b-Beltrami fields;Communications in Contemporary Mathematics;2022-03-02
4. Geodesic Rays of the N-Body Problem;Archive for Rational Mechanics and Analysis;2022-01-05
5. Classical n-body scattering with long-range potentials;Nonlinearity;2021-10-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3