A Sobolev-Type Inequality for the Curl Operator and Ground States for the Curl–Curl Equation with Critical Sobolev Exponent

Author:

Mederski JarosławORCID,Szulkin Andrzej

Abstract

AbstractLet $$\Omega \subset \mathbb {R}^3$$ Ω R 3 be a Lipschitz domain and let $$S_\mathrm {curl}(\Omega )$$ S curl ( Ω ) be the largest constant such that $$\begin{aligned} \int _{\mathbb {R}^3}|\nabla \times u|^2\, \mathrm{d}x\ge S_{\mathrm {curl}}(\Omega ) \inf _{\begin{array}{c} w\in W_0^6(\mathrm {curl};\mathbb {R}^3)\\ \nabla \times w=0 \end{array}}\Big (\int _{\mathbb {R}^3}|u+w|^6\,\mathrm{d}x\Big )^{\frac{1}{3}} \end{aligned}$$ R 3 | × u | 2 d x S curl ( Ω ) inf w W 0 6 ( curl ; R 3 ) × w = 0 ( R 3 | u + w | 6 d x ) 1 3 for any u in $$W_0^6(\mathrm {curl};\Omega )\subset W_0^6(\mathrm {curl};\mathbb {R}^3)$$ W 0 6 ( curl ; Ω ) W 0 6 ( curl ; R 3 ) , where $$W_0^6(\mathrm {curl};\Omega )$$ W 0 6 ( curl ; Ω ) is the closure of $$\mathcal {C}_0^{\infty }(\Omega ,\mathbb {R}^3)$$ C 0 ( Ω , R 3 ) in $$\{u\in L^6(\Omega ,\mathbb {R}^3): \nabla \times u\in L^2(\Omega ,\mathbb {R}^3)\}$$ { u L 6 ( Ω , R 3 ) : × u L 2 ( Ω , R 3 ) } with respect to the norm $$(|u|_6^2+|\nabla \times u|_2^2)^{1/2}$$ ( | u | 6 2 + | × u | 2 2 ) 1 / 2 . We show that $$S_{\mathrm {curl}}(\Omega )$$ S curl ( Ω ) is strictly larger than the classical Sobolev constant S in $$\mathbb {R}^3$$ R 3 . Moreover, $$S_{\mathrm {curl}}(\Omega )$$ S curl ( Ω ) is independent of $$\Omega $$ Ω and is attained by a ground state solution to the curl–curl problem $$\begin{aligned} \nabla \times (\nabla \times u) = |u|^4u \end{aligned}$$ × ( × u ) = | u | 4 u if $$\Omega =\mathbb {R}^3$$ Ω = R 3 . With the aid of these results we also investigate ground states of the Brezis–Nirenberg-type problem for the curl–curl operator in a bounded domain $$\Omega $$ Ω $$\begin{aligned} \nabla \times (\nabla \times u) +\lambda u = |u|^4u\quad \hbox {in }\Omega , \end{aligned}$$ × ( × u ) + λ u = | u | 4 u in Ω , with the so-called metallic boundary condition $$\nu \times u=0$$ ν × u = 0 on $$\partial \Omega $$ Ω , where $$\nu $$ ν is the exterior normal to $$\partial \Omega $$ Ω .

Funder

Narodowe Centrum Nauki

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Reference36 articles.

1. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic Press, London (2013)

2. Akhmediev, N.N.; Ankiewicz, A.; Soto-Crespo, J.M.: Does the nonlinear Schrödinger equation correctly describe beam propagation? Opt. Lett. 18, 411, 1993

3. Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864, 1998

4. Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296, 1976

5. Bartsch, T.; Dohnal, T.; Plum, M.; Reichel, W.: Ground states of a nonlinear curl–curl problem in cylindrically symmetric media. Nonlinear Diff. Equ. Appl. 23(52), 34, 2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ground State and Bounded State Solutions for a Critical Stationary Maxwell System Arising in Electromagnetism;The Journal of Geometric Analysis;2024-05-16

2. On a critical time-harmonic Maxwell equation in nonlocal media;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2024-02-29

3. Multiple cylindrically symmetric solutions of nonlinear Maxwell equations;Topological Methods in Nonlinear Analysis;2023-11-19

4. Multiple Solutions to Cylindrically Symmetric Curl-Curl Problems and Related Schrödinger Equations with Singular Potentials;SIAM Journal on Mathematical Analysis;2023-09-19

5. Ground state solution of weakly coupled time-harmonic Maxwell equations;Zeitschrift für angewandte Mathematik und Physik;2023-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3