Abstract
AbstractLet $$\Omega \subset \mathbb {R}^3$$
Ω
⊂
R
3
be a Lipschitz domain and let $$S_\mathrm {curl}(\Omega )$$
S
curl
(
Ω
)
be the largest constant such that $$\begin{aligned} \int _{\mathbb {R}^3}|\nabla \times u|^2\, \mathrm{d}x\ge S_{\mathrm {curl}}(\Omega ) \inf _{\begin{array}{c} w\in W_0^6(\mathrm {curl};\mathbb {R}^3)\\ \nabla \times w=0 \end{array}}\Big (\int _{\mathbb {R}^3}|u+w|^6\,\mathrm{d}x\Big )^{\frac{1}{3}} \end{aligned}$$
∫
R
3
|
∇
×
u
|
2
d
x
≥
S
curl
(
Ω
)
inf
w
∈
W
0
6
(
curl
;
R
3
)
∇
×
w
=
0
(
∫
R
3
|
u
+
w
|
6
d
x
)
1
3
for any u in $$W_0^6(\mathrm {curl};\Omega )\subset W_0^6(\mathrm {curl};\mathbb {R}^3)$$
W
0
6
(
curl
;
Ω
)
⊂
W
0
6
(
curl
;
R
3
)
, where $$W_0^6(\mathrm {curl};\Omega )$$
W
0
6
(
curl
;
Ω
)
is the closure of $$\mathcal {C}_0^{\infty }(\Omega ,\mathbb {R}^3)$$
C
0
∞
(
Ω
,
R
3
)
in $$\{u\in L^6(\Omega ,\mathbb {R}^3): \nabla \times u\in L^2(\Omega ,\mathbb {R}^3)\}$$
{
u
∈
L
6
(
Ω
,
R
3
)
:
∇
×
u
∈
L
2
(
Ω
,
R
3
)
}
with respect to the norm $$(|u|_6^2+|\nabla \times u|_2^2)^{1/2}$$
(
|
u
|
6
2
+
|
∇
×
u
|
2
2
)
1
/
2
. We show that $$S_{\mathrm {curl}}(\Omega )$$
S
curl
(
Ω
)
is strictly larger than the classical Sobolev constant S in $$\mathbb {R}^3$$
R
3
. Moreover, $$S_{\mathrm {curl}}(\Omega )$$
S
curl
(
Ω
)
is independent of $$\Omega $$
Ω
and is attained by a ground state solution to the curl–curl problem $$\begin{aligned} \nabla \times (\nabla \times u) = |u|^4u \end{aligned}$$
∇
×
(
∇
×
u
)
=
|
u
|
4
u
if $$\Omega =\mathbb {R}^3$$
Ω
=
R
3
. With the aid of these results we also investigate ground states of the Brezis–Nirenberg-type problem for the curl–curl operator in a bounded domain $$\Omega $$
Ω
$$\begin{aligned} \nabla \times (\nabla \times u) +\lambda u = |u|^4u\quad \hbox {in }\Omega , \end{aligned}$$
∇
×
(
∇
×
u
)
+
λ
u
=
|
u
|
4
u
in
Ω
,
with the so-called metallic boundary condition $$\nu \times u=0$$
ν
×
u
=
0
on $$\partial \Omega $$
∂
Ω
, where $$\nu $$
ν
is the exterior normal to $$\partial \Omega $$
∂
Ω
.
Funder
Narodowe Centrum Nauki
Alexander von Humboldt-Stiftung
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mathematics (miscellaneous),Analysis
Reference36 articles.
1. Agrawal, G.: Nonlinear Fiber Optics, 5th edn. Academic Press, London (2013)
2. Akhmediev, N.N.; Ankiewicz, A.; Soto-Crespo, J.M.: Does the nonlinear Schrödinger equation correctly describe beam propagation? Opt. Lett. 18, 411, 1993
3. Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864, 1998
4. Aubin, T.: Équations différentielles non linéaires et probléme de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269–296, 1976
5. Bartsch, T.; Dohnal, T.; Plum, M.; Reichel, W.: Ground states of a nonlinear curl–curl problem in cylindrically symmetric media. Nonlinear Diff. Equ. Appl. 23(52), 34, 2016
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献