Abstract
In this paper, we study the following nonlinear time-harmonic Maxwell equations
\begin{equation}\label{equation 0.1}
\nabla\times(\nabla \times E)-\omega^2\varepsilon(x)E
=P(x)|E|^{p-2}E+Q(x)|E|^{q-2}E,
\end{equation}
where $\varepsilon(x)$ is the permittivity of the material, $x\in\mathbb{R}^{3}$,
$1< q< {p}/({p-1})< 2< p< 6$, $P(x),Q(x)\in C\left(\mathbb{R}^{3},\mathbb{R}\right)$.
Under some special cylindrical symmetric conditions for $\varepsilon(x)$, $P(x)$
and $Q(x)$,
we obtain infinite many cylindrically symmetric solutions of \eqref{equation 0.1}
by using variational method and fountain theorems without $\tau$-upper semi-continuity.
Publisher
Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
Subject
Applied Mathematics,Analysis