Detecting factors of quadratic variation in the presence of market microstructure noise

Author:

Kunitomo Naoto,Kurisu Daisuke

Abstract

AbstractA method of detecting latent factors of quadratic variation (QV) of Itô semimartingales from a set of discrete observations is developed when the market microstructure noise is present. We propose a new way to determine the number of latent factors of quadratic co-variations of asset prices based on the SIML (separating information maximum likelihood) method by Kunitomo et al. (Separating information maximum likelihood estimation for high frequency financial data. Springer, Berlin, 2018). In high-frequency financial data, it is important to investigate the effects of possible jumps and market microstructure noise existed in financial markets. We explore the estimated variance–covariance matrix of latent (efficient) prices of the underlying Itô semimartingales and investigate its characteristic roots and vectors of the estimated quadratic variation. We give some simulation results to see the finite sample properties of the proposed method and illustrate an empirical data analysis on the Tokyo stock market.

Funder

JSPS

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3