Local SIML estimation of some Brownian and jump functionals under market micro-structure noise

Author:

Kunitomo NaotoORCID,Sato Seisho

Abstract

AbstractThis paper is a contribution to a special issue on Data Science: Present and Future, because the main topic has been and will be in an active area of contemporary data science. High-frequency financial data are commonly available by now. To estimate Brownian and jump functionals from high-frequency financial data under market micro-structure noise, we introduce a new local estimation method of the integrated volatility and higher order variation of Ito’s semi-martingale processes. Although extending the realized volatility (RV) estimation to the general diffusion-jump processes without micro-market noise is straightforward, estimating Brownian and jump functionals in the presence of micro-market noise may not be easy. In this study, we develop the local SIML (LSIML) method, which is an extension of the separating information maximum likelihood (SIML) method proposed by Kunitomo et al. (Separating information maximum likelihood method for high-frequency financial data, 2018) and Kunitomo and Kurisu (Jpn J Stat Data Sci (JJSD) 4(1):601–641, 2021). The new LSIML method is simple, and the LSIML estimator has some desirable asymptotic properties and reasonable finite sample properties.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Statistics and Probability

Reference13 articles.

1. Ait-Sahalia, Y., & Jacod, J. (2014). High-frequency financial econometrics. Princeton University Press.

2. Barndorff-Nielsen, O., Hansen, P., Lunde, A., & Shephard, N. (2008). Designing realised kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76–6(2008), 1481–1536.

3. Hausler, E., & Luschgy, H. (2015). Stable convergence and stable limit theorems. Springer.

4. Ikeda, N., & Watanabe, S. (1989). Stochastic differential equations and diffusion processes (2nd ed.). North-Holland.

5. Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., & Vetter, M. (2009). Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Processes and their Applications, 119(2009), 2249–2276.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The SIML method without microstructure noise;Japanese Journal of Statistics and Data Science;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3