Selecting an appropriate machine-learning model for perovskite solar cell datasets

Author:

Salah Mohamed M.,Ismail Zahraa,Abdellatif SamehORCID

Abstract

AbstractUtilizing artificial intelligent based algorithms in solving engineering problems is widely spread nowadays. Herein, this study provides a comprehensive and insightful analysis of the application of machine learning (ML) models to complex datasets in the field of solar cell power conversion efficiency (PCE). Mainly, perovskite solar cells generate three datasets, varying dataset size and complexity. Various popular regression models and hyperparameter tuning techniques are studied to guide researchers and practitioners looking to leverage machine learning methods for their data-driven projects. Specifically, four ML models were investigated; random forest (RF), gradient boosting (GBR), K-nearest neighbors (KNN), and linear regression (LR), while monitoring the ML model accuracy, complexity, computational cost, and time as evaluating parameters. Inputs' importance and contribution were examined for the three datasets, recording a dominating effect for the electron transport layer's (ETL) doping as the main controlling parameter in tuning the cell's overall PCE. For the first dataset, ETL doping recorded 93.6%, as the main contributor to the cell PCE, reducing to 79.0% in the third dataset.

Funder

STDF

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3