Investigating the Performance of FASnI3‐Based Perovskite Solar Cells with Various Electron and Hole Transport Layers: Machine Learning Approach and SCAPS‐1D Analysis

Author:

Khan Tanvir Mahtab1,Ahmed Sheikh Rashel Al1ORCID

Affiliation:

1. Department of Electrical, Electronic and Communication Engineering Pabna University of Science and Technology Pabna 6600 Bangladesh

Abstract

AbstractIn this study, tungsten disulfide (WS2) as an electron transport layer (ETL) and zinc phosphide (Zn3P2) as a hole transport layer (HTL) are incorporated to improve the performance of the FASnI3‐based perovskite solar cell (PSC). The solar cell capacitance simulator in one dimension (SCAPS‐1D) is used to investigate the photovoltaic (PV) performances of the heterojunction Al/FTO/WS2/FASnI3/Zn3P2/Ni solar structure. The performance metrics of proposed device with numerous ETLs and HTLs are discussed. The suggested device provides appropriate band structures, which in turn potentially reduce minority electron recombination, thereby enhancing overall performances. Influences of various physical parameters such as thickness, doping concentration, bulk defect, interface defect states, work function, and back surface recombination velocity (BSRV) on the device performances have also been analyzed. An efficiency of 29.81% is achieved at the optimum thicknesses of 0.05 µm for WS2 ETL, 1.0 µm for FASnI3 absorber, and 0.1 µm for Zn3P2 HTL. Furthermore, a machine learning algorithm is used to assess the impact of multiple semiconductor parameters, and found that defect density influences the most. This model, which has an approximate correlation coefficient (R2) of 0.937, can predict the data with precision. Therefore, these numerical outcomes will help researchers further design and manufacture a low‐cost and highly efficient FASnI3‐based PSC.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3