Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Adelman, M., Haimovich, F., Ham, A., & et al. (2018). Predicting school dropout with administrative data: new evidence from guatemala and honduras. Education Economics, 26(4), 356–372.
2. Agrusti, F., Mezzini, M., & Bonavolontà, G. (2020). Deep learning approach for predicting university dropout: A case study at roma tre university. Journal of e-Learning and Knowledge Society, 16(1), 44–54.
3. Al-Azazi, F.A., & Ghurab, M. (2023). Ann-lstm: A deep learning model for early student performance prediction in mooc. Heliyon
4. Baranyi, M., Nagy, M., & Molontay, R. (2020). Interpretable deep learning for university dropout prediction. In: Proceedings of the 21st annual conference on information technology education, pp 13–19
5. Baron, M. J. S., Sanabria, J. S. G., & Diaz, J. E. E. (2022). Deep neural network dnn applied to the analysis of student dropout. Investigación e Innovación en Ingenierías, 10(1), 202–214.