1. Anozie, N., & Junker, B. W. (2006). Predicting end-of-year accountability assessment scores from monthly student records in an online tutoring system. American Association for Artificial Intelligence Workshop on Educational Data Mining (AAAI-06). Doi: WS-06-05/WS06-05-001.
2. Ayers, E., & Junker, B. (2008). IRT modeling of tutor performance to predict end-of-year exam scores. Educational and Psychological Measurement. https://doi.org/10.1177/0013164408318758.
3. Bates, D., Maechler, M., & Bolker, B. (2013). lme4: Linear mixed-effects models using S4 classes. R package version 1.1-7. Doi:Citeulike-article-id:1080437.
4. Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2016). Mlr: Machine learning in R. The Journal of Machine Learning Research.
5. Carroll, J. M., Solity, J., & Shapiro, L. R. (2016). Predicting dyslexia using prereading skills: The role of sensorimotor and cognitive abilities. Journal of Child Psychology and Psychiatry, and Allied Disciplines. https://doi.org/10.1111/jcpp.12488.