Abstract
AbstractWe present a complete characterization of the metric compactification of $$L_{p}$$Lp spaces for $$1\le p < \infty $$1≤p<∞. Each element of the metric compactification of $$L_{p}$$Lp is represented by a random measure on a certain Polish space. By way of illustration, we revisit the $$L_{p}$$Lp-mean ergodic theorem for $$1< p < \infty $$1<p<∞, and Alspach’s example of an isometry on a weakly compact convex subset of $$L_{1}$$L1 with no fixed points.
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Analysis,Algebra and Number Theory
Reference40 articles.
1. Abate, M., Raissy, J.: Wolff-Denjoy theorems in nonsmooth convex domains. Ann. Mat. Pura Appl. 193(5), 1503–1518 (2014). (4)
2. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory 2nd Ed., volume 233 of Graduate Texts in Mathematics. Springer, Cham (2016)
3. Aldous, D.J.: Subspaces of $$L^{1}$$, via random measures. Trans. Am. Math. Soc. 267(2), 445–463 (1981)
4. Alessandrini, D., Liu, L., Papadopoulos, A., Su, W.: The horofunction compactification of Teichmüller spaces of surfaces with boundary. Topol. Appl. 208, 160–191 (2016)
5. Alspach, D.E.: A fixed point free nonexpansive map. Proc. Am. Math. Soc. 82(3), 423–424 (1981)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献