A Metric Fixed Point Theorem and Some of Its Applications

Author:

Karlsson Anders

Abstract

AbstractA general fixed point theorem for isometries in terms of metric functionals is proved under the assumption of the existence of a conical bicombing. It is new for isometries of convex sets of Banach spaces as well as for non-locally compact CAT(0)-spaces and injective spaces. Examples of actions on non-proper CAT(0)-spaces come from the study of diffeomorphism groups, birational transformations, and compact Kähler manifolds. A special case of the fixed point theorem provides a novel mean ergodic theorem that in the Hilbert space case implies von Neumann’s theorem. The theorem accommodates classically fixed-point-free isometric maps such as those of Kakutani, Edelstein, Alspach and Prus. Moreover, from the main theorem together with some geometric arguments of independent interest, one can deduce that every bounded invertible operator of a Hilbert space admits a nontrivial invariant metric functional on the space of positive operators. This is a result in the direction of the invariant subspace problem although its full meaning is dependent on a future determination of such metric functionals.

Funder

University of Geneva

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Dale Alspach, E.: A fixed point free nonexpansive map. Proc. Am. Math. Soc. 82(3), 423–424 (1981)

2. Avelin, B., Karlsson, A.: Deep limits and cut-off phenomena for neural networks. J. Mach. Learn. Res. 23, Article ID 191 (2022)

3. Bacak, M.: Old and new challenges in Hadamard spaces. Jpn. J. Math. 18(2), 115–168 (2023). https://arxiv.org/pdf/1807.01355.pdf

4. Bader, U., Gelander, T., Monod, N.: A fixed point theorem for L1 spaces. Invent. Math. 189(1), 143–148 (2012)

5. Bader, U., Caprace, P.-E., Furman, A., Sisto, A.: Hyperbolic actions of higher-rank lattices come from rank-one factors. https://arxiv.org/abs/2206.06431

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3