Plasticity of wheat seedling responses to K+ deficiency highlighted by integrated phenotyping of roots and root hairs over the whole root system

Author:

Madani IkramORCID,Peltier Jean-BenoîtORCID,Boeglin MartinORCID,Sentenac HervéORCID,Véry Anne-AliénorORCID

Abstract

AbstractThe availability in the soil of potassium (K+), a poorly mobile macronutrient required in large quantities for plant growth, is generally suboptimal for crop production in the absence of fertilization, making improvement of the ability of crops to adapt to K+ deficiency stress a major issue. Increasing the uptake capacity of the root system is among the main strategies to achieve this goal. Here, we report an integrative approach to examine the effect of K+ deficiency on the development of young plant entire root system, including root hairs which are known to provide a significant contribution to the uptake of poorly mobile nutrients such as K+, in two genetically distant wheat varieties. A rhizobox-type methodology was developed to obtain highly-resolved images of root and root hairs, allowing to describe global root and root hair traits over the whole root system via image analysis procedures. The two wheat varieties responded differently to the K+ shortage: Escandia, a wheat ancestor, reduced shoot biomass in condition of K+ shortage and substantially increased the surface area of its root system, specifically by increasing the total root hair area. Oued Zenati, a landrace, conversely appeared unresponsive to the K+ shortage but was shown to constitutively express, independently of the external K+ availability, favorable traits to cope with reduced K+ availability, among which a high total root hair area. Thus, valuable information on root system adaptation to K+ deficiency was provided by global analyses including root hairs, which should also be relevant for other nutrient stresses.

Funder

government of Algeria

ERANET EU

INRAE, BAP department

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3