Handling non-ignorable dropouts in longitudinal data: a conditional model based on a latent Markov heterogeneity structure
Author:
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Link
http://link.springer.com/content/pdf/10.1007/s11749-014-0397-z.pdf
Reference42 articles.
1. Akaike H (1973) Information theory and an extension of maximum likelihood principle. In: Petrov BN, Caski F (eds) Selected papers of Hirotugu Akaike, Proceedings of the second international symposium on information theory, pp 267–281. Springer-Verlag, New York
2. Albert PS, Follman DA (2007) Random effects and latent process approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Stat Methods Med Res 16:437–439
3. Alfò M, Aitkin M (2000) Random coefficient models for binary longitudinal responses with attrition. Stat Comput 10:279–287
4. Alfò M, Maruotti A (2009) A selection model for longitudinal binary responses subject to non-ignorable attrition. Stat Med 28:2435–2450
5. Bacci S, Pandolfi A, Pennoni F (2014) A comparison of some criteria for states selection in the latent Markov model for longitudinal data. Adv Data Anal Classif 8:125–145
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A hidden Markov model for continuous longitudinal data with missing responses and dropout;Biometrical Journal;2023-04-10
2. A two-step estimator for generalized linear models for longitudinal data with time-varying measurement error;Advances in Data Analysis and Classification;2021-11-22
3. Multilevel Hidden Markov Models for Behavioral Data: A Hawk-and-Dove Experiment;Multivariate Behavioral Research;2021-06-22
4. Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models;TEST;2020-07-24
5. Finite Mixtures of Hidden Markov Models for Longitudinal Responses Subject to Drop out;Multivariate Behavioral Research;2019-09-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3