Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models

Author:

Farcomeni AlessioORCID,Ranalli Monia,Viviani Sara

Abstract

AbstractWe present a method for dimension reduction of multivariate longitudinal data, where new variables are assumed to follow a latent Markov model. New variables are obtained as linear combinations of the multivariate outcome as usual. Weights of each linear combination maximize a measure of separation of the latent intercepts, subject to orthogonality constraints. We evaluate our proposal in a simulation study and illustrate it using an EU-level data set on income and living conditions, where dimension reduction leads to an optimal scoring system for material deprivation. An implementation of our approach can be downloaded from .

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference49 articles.

1. Aitchison J (2011) The statistical analysis of compositional data. Monographs on statistics and applied probability. Springer, New York

2. Anderson G, Farcomeni A, Pittau MG, Zelli R (2019a) Multidimensional nation wellbeing, more equal yet more polarized: an analysis of the progress of human development since 1990. J Econ Dev 44:00–11

3. Anderson G, Farcomeni A, Pittau MG, Zelli R (2019b) Rectangular latent Markov models for time-specific clustering, with an analysis of the well being of nations. J R Stat Soc (Ser C) 68:603–621

4. Ando T, Bai J (2017) Clustering huge number of financial time series: a panel data approach with high-dimensional predictors and factor structures. J Am Stat Assoc 112:1182–1198

5. Atkinson AB (2003) Multidimensional deprivation: contrasting social welfare and counting approaches. J Econ Inequal 1:51–65

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3