Abstract
AbstractSharp upper bounds are proved for the probability that a standardized random variable takes on a value outside a possibly asymmetric interval around 0. Six classes of distributions for the random variable are considered, namely the general class of ‘distributions’, the class of ‘symmetric distributions’, of ‘concave distributions’, of ‘unimodal distributions’, of ‘unimodal distributions with coinciding mode and mean’, and of ‘symmetric unimodal distributions’. In this way, results by Gauß (Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores 5:1–58, 1823), Bienaymé (C R Hebd Séance Acad Sci Paris 37:309–24, 1853), Bienaymé (C R Hebd Séance Acad Sci Paris 37:309–24, 1853), Chebyshev (Journal de mathématiques pures et appliqués (2) 12:177–184, 1867), and Cantelli (Atti del Congresso Internazionale dei Matematici 6:47–59, 1928) are generalized. For some of the known inequalities, such as the Gauß inequality, an alternative proof is given.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Reference39 articles.
1. Bhat MA, Kosuru GSR (2022) Generalizations of some concentration inequalities. Stat. Probab. Lett. 182:109298
2. Bickel PJ, Krieger AM (1992) Extensions of Chebychev’s inequality with applications. Probab. Math. Stat. 13:293–310
3. Billingsley P (1995) Probability and measure. Wiley, New York
4. Bienaymé IJ (1853) Considérations à l’appui de la decouverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés. C R hebd. Séances Acad Sci Paris 37:309–24. Reprinted (1867) Journal de mathématiques pures et appliqués (2) 12:158–176
5. Boucheron S, Lugosi G, Massart P (2013) Concentration inequalities. Oxford University Press, Oxford
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献