1. Ekhart C, Doodeman VD, Rodenhuis S et al. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet Genomics 2008; 18(6):515–23.
2. Roy P, Yu LJ, Crespi CL et al. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27(6):655–66.
3. de Jonge ME, Huitema AD, Rodenhuis S et al. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 2005; 44(11):1135–64.
4. Pass GJ, Carrie D, Boylan M et al. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse. Cancer Res 2005; 65(10):4211–7.
5. Gu J, Chen CS, Wei Y et al. A mouse model with liver-specific deletion and global suppression of the NADPH-cytochrome P450 reductase gene: characterization and utility for in vivo studies of cyclophosphamide disposition. J Pharmacol Exp Ther 2007; 321(1):9–17.