1. W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Traving, and M. Englehardt, Comprehensive study of copper wires with lateral dimensions of 100 nm and smaller, J. Appl. Phys., 97, 023706 (2005) and A.F. Mayadas and M. Shatzkes, Electrical resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces, Phys. Rev., B, 1 (4), 1382 (1970) and also M. Armacost, Materials 7 Processing. IEEE IITC, San Francisco, CA, (June 2008).
2. G. Steinlesberger, M. Englehardt, G. Schindler, and W. Steinhoegl, Processing technology of the investigation of sub-50 nm copper damascene interconnects, Solid State Electron., 47, 1237 (2002) and K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and system-on-chip integration, Proc. IEEE 89, 602 (May 2001) and also M. Leong et al., Transistor scaling with novel materials, Mater. Today, 9(6), 26 (2006)
3. C. Blass, P. Weinberger, L. Szunyog, P.M. Levy, C.B. Sommers, and I. Mertig, Phil. Mag., B-78, 549 (1998) and N. Srivastava and K. Banerjee, A comparative scaling analysis of metallic and carbon nano tube interconnections for nanometer scale VLSI technologies, Proc. 21st Int. VLSI multilevel interconnect Conf. Waikoloa, HI, 393, Sept. 29–2 Oct. (2004) and J.A. Green wood, Br. J. Appl. Phys., 17, 1621 (1966) and R. Holm, Electrical contacts. Theory and applications, Springer-Verlag, Berlin, (1967) and Y.H. Jang, and J.R. Barber, J. Appl. Phys., 94 (11), 7215 (2003) and also J. Van Olmen et al., IEEE IITC Tech Dig.,, 241 (2007)
4. H.E. Camblong and P.M. Levy, Electrical resistivity of a thin film, Cond. Matter., 9911093 V1, Nov. (1999) and also J.Y. Cho et al., J. Electron. Mater., 34 (1), 53 (2005) and N. Michael et al., J. Electron. Mater., 32 (10), 988 (2003) and C.A. Stafford, D. Baeriswyl, and Burki, Jellium model of metallic nanocohesion, Phys. Rev. Letts., 79
5. (15) 2863 Oct. (1997) and also J. Gouldstone et al., Acta Mater., 55, 4015 (2007)