Reference145 articles.
1. Adamczak, R. (2016). A Note on the sample complexity of the Er-SpUD algorithm by Spielman, Wang and Wright for exact recovery of sparsely used dictionaries. Journal of Machine Learning Research, 17, 1–18.
2. Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), 4311–4322.
3. Attouch, H., Bolte, J., Redont, P., & Soubeyran, A. (2010). Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality. Mathematics of Operational Research, 35(2), 438–457.
4. Babadi, B., Kalouptsidis, N., & Tarokh, V. (2010). SPARLS: The sparse RLS algorithm. IEEE Transactions on Signal Processing, 58(8), 4013–4025.
5. Bao, C., Ji, H., Quan, Y., & Shen, Z. (2016). Dictionary learning for sparse coding: Algorithms and convergence analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7), 1356–1369.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of Compressed Sensing to Radar Signals;2023 33rd International Conference Radioelektronika (RADIOELEKTRONIKA);2023-04-19
2. Convergence bounds for empirical nonlinear least-squares;ESAIM: Mathematical Modelling and Numerical Analysis;2022-01