Convergence bounds for empirical nonlinear least-squares

Author:

Eigel Martin,Schneider Reinhold,Trunschke PhilippORCID

Abstract

We consider best approximation problems in a nonlinear subset ℳ of a Banach space of functions (𝒱,∥•∥). The norm is assumed to be a generalization of the L 2-norm for which only a weighted Monte Carlo estimate ∥•∥n can be computed. The objective is to obtain an approximation v ∈ ℳ of an unknown function u ∈ 𝒱 by minimizing the empirical norm ∥u − vn. We consider this problem for general nonlinear subsets and establish error bounds for the empirical best approximation error. Our results are based on a restricted isometry property (RIP) which holds in probability and is independent of the specified nonlinear least squares setting. Several model classes are examined and the analytical statements about the RIP are compared to existing sample complexity bounds from the literature. We find that for well-studied model classes our general bound is weaker but exhibits many of the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal sampling density (as known for linear spaces) for sets of functions with sparse representations.

Funder

Deutsche Forschungsgemeinschaft

Einstein Stiftung Berlin

Berlin International Graduate School in Model and Simulation based Research

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3