The role of increasing riverbank vegetation density on flow dynamics across an asymmetrical channel

Author:

Valyrakis ManousosORCID,Liu Da,Turker Umut,Yagci Oral

Abstract

Abstract Over the last two decades, the role of vegetation in the environmental and ecological restoration of surface water bodies has received much attention. In this context, the momentum exchange between the flow through the main channel and the riparian zone is a key mechanism. The primary goal of this study is to investigate the role of bank vegetation density on flow dynamics across the whole channel. This experimental study presents the major findings from a series of flow measurements across a channel having a sloping bank with vegetation at varying densities. The experiments are conducted under the same, uniform flow and fixed bed conditions, for a range of six linear and rectilinear arrangements of incremental streambank vegetation densities. A set of ten velocity profiles is obtained across the test cross-section of the channel, including the riverbank, for each vegetation density. These flow measurements are analyzed to derive roughness coefficients, which are related to the bulk flow velocities through the main channel and the riverbank and discuss the redistribution of flow velocities. An approximate doubling for the estimates of time-averaged boundary shear stress at the main channel, is observed for the case of no to dense vegetation, which enable further discussing implications for the stability of bed surface material. It is found that the vegetation arrangement, in addition to vegetation density, can have a strong impact in modifying the mean flow velocity at the main channel, for low riparian densities (φ < 0.6%). Highlights Flow dynamics are measured across the whole channel, including the vegetated riverbank. As stem density increases, mean flow velocity in the main channel increases while mean flow at the riverbank decreases. The arrangement of riparian vegetation can be as important as that of the density, in modifying the mean flow field of the main channel, for low riparian densities. Bed shear stresses at the main channel are estimated to increase with riverbank vegetation, reducing the stability of the stream’s bed surface.

Funder

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3