Experimental Study on Influence of Different Patterns of an Emergent Vegetation Patch on the Flow Field and Scour/Deposition Processes in the Wake Region

Author:

Yagci Oral1ORCID,Özgur Kirca V. S.2,Kitsikoudis Vasileios3,Wilson Catherine A. M. E.4ORCID,Celik M. Furkan5ORCID,Sertkan Caner2

Affiliation:

1. Civil Engineering Department Engineering Faculty Aydin Adnan Menderes University Aydin Turkey

2. Civil Engineering Department Istanbul Technical University Istanbul Turkey

3. Department of Water Engineering and Management Faculty of Engineering Technology University of Twente Enschede The Netherlands

4. Hydro‐Environmental Research Center School of Engineering Cardiff University Cardiff UK

5. Geomatics Engineering Department Civil Engineering Faculty Istanbul Technical University Istanbul Turkey

Abstract

AbstractFlume experiments were conducted to comprehend the impact of different patterns of an emergent vegetation patch on the flow field and the scour process in natural rivers. Velocity measurements, flow visualization, and scour tests were undertaken around different vegetation patch patterns, which were simulated inspired by the expansion process of a typical instream vegetation. The patch expansion process was idealized with an initially circular patch of rigid emergent stems becoming elongated due to positive and negative feedbacks. The expansion of the vegetation patch was considered to occur in three stages, in which the density of the patch from the previous stage was increased while the patch was also elongated by connecting at its downstream side with another sparser vegetation patch. These stages were replicated succesively by increasing the density and elongating the patch. In this way, two processes (i.e., elongation and decrease in permeability), which usually have hydrodynamically opposite effects on flow fields, were simulated at the same obstruction. Despite generally elongated obstacles being streamlined bodies, the morphometric analysis obtained by laser scanner revealed that streamlined elongation of permeable patches amplifies global scour and enhances localization of the local scour hole. This situation implies that as the patch expands, in the wake region, the steady‐wake region becomes shorter, turbulence diminishes, lateral shear stress enhances, and deposition cannot occur far from the patch. Consequently, as the patch expands, the hydrodynamic consequences may restrict further patch expansion after a certain length/density.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3