Time-optimal trajectory planning for a rigid formation of nonholonomic mobile platforms

Author:

Schmidt SimonORCID,Gattringer Hubert,Mueller Andreas

Abstract

AbstractThis paper presents a method for planning time-optimal trajectories for a formation of multiple nonholonomic (heavy duty) platforms (HDPs) to cooperatively transport an object to a specified pose. The first part addresses the mobile platforms themselves while the second part provides a trajectory planning approach derived from the well-known virtual leader approach. In order to ensure proper transport of the shared payload, the vehicles are modeled individually, resulting in a formation control problem. The goal of the optimization process is to minimize a cost function that balances time optimality, smooth control signals, and formation rigidity. The optimal control problem (OCP) takes into account the kinematics of the vehicles as well as their physical limitations. It is solved by using a multiple shooting method, which yields the desired trajectories for all vehicles while ensuring smooth control signals. The paper includes optimization results for several scenarios involving two and three HDPs together with various target poses, demonstrating the effectiveness of the proposed method.

Funder

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3