Direct detection of atomic dark matter in white dwarfs

Author:

Curtin David,Setford JackORCID

Abstract

Abstract Dark matter could have a dissipative asymmetric subcomponent in the form of atomic dark matter (aDM). This arises in many scenarios of dark complexity, and is a prediction of neutral naturalness, such as the Mirror Twin Higgs model. We show for the first time how White Dwarf cooling provides strong bounds on aDM. In the presence of a small kinetic mixing between the dark and SM photon, stars are expected to accumulate atomic dark matter in their cores, which then radiates away energy in the form of dark photons. In the case of white dwarfs, this energy loss can have a detectable impact on their cooling rate. We use measurements of the white dwarf luminosity function to tightly constrain the kinetic mixing parameter between the dark and visible photons, for DM masses in the range 105–105 GeV, down to values of ϵ ∼ 1012. Using this method we can constrain scenarios in which aDM constitutes fractions as small as 103 of the total dark matter density. Our methods are highly complementary to other methods of probing aDM, especially in scenarios where the aDM is arranged in a dark disk, which can make direct detection extremely difficult but actually slightly enhances our cooling constraints.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heavy dark matter in white dwarfs: multiple-scattering capture and thermalization;Journal of Cosmology and Astroparticle Physics;2024-07-01

2. Cool dark sector, concordance, and a low σ8;Physical Review D;2024-05-10

3. Baryogenesis through asymmetric reheating in the mirror twin Higgs;Journal of High Energy Physics;2024-05-07

4. Electromagnetic Signatures of Mirror Stars;The Astrophysical Journal;2024-04-01

5. Milky Way white dwarfs as sub-GeV to multi-TeV dark matter detectors;Journal of Cosmology and Astroparticle Physics;2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3