Heavy dark matter in white dwarfs: multiple-scattering capture and thermalization

Author:

Bell Nicole F.ORCID,Busoni GiorgioORCID,Robles SandraORCID,Virgato MichaelORCID

Abstract

Abstract We present an improved treatment for the scattering of heavy dark matter from the ion constituents of a white dwarf. In the heavy dark matter regime, multiple collisions are required for the dark matter to become gravitationally captured. Our treatment incorporates all relevant physical effects including the dark matter trajectories, nuclear form factors, and radial profiles for the white dwarf escape velocity and target number densities. Our capture rates differ by orders of magnitude from previous estimates, which have typically used approximations developed for dark matter scattering in the Earth. We also compute the time for the dark matter to thermalize in the center of the white dwarf, including in-medium effects such as phonon emission and absorption from the ionic lattice in the case where the star has a crystallized core. We find much shorter thermalization timescales than previously estimated, especially if the white dwarf core has crystallized. We illustrate the importance of our improved approach by determining the cross section required for accumulated asymmetric dark matter to self-gravitate.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3