Author:
Zapp Korinna C.,Krauss Frank,Wiedemann Urs A.
Abstract
Abstract
We present a conceptually new framework for describing jet evolution in the dense medium produced in ultra-relativistic nucleus-nucleus collisions using perturbative QCD and its implementation into the Monte Carlo event generator Jewel. The rescattering of hard partons in the medium is modelled by infrared continued pQCD matrix elements supplemented with parton showers. The latter approximate higher order real-emission matrix elements and thus generate medium-induced gluon emissions. The interplay between different emissions is governed by their formation times. The destructive interference between subsequent scattering processes, the non-Abelian version of the Landau-Pomeranchuk-Migdal effect, is also taken into account. In this way the complete radiation pattern is consistently treated in a uniform way. Results obtained within this minimal and theoretically well constrained framework are compared with a variety of experimental data susceptible to jet-quenching effects at both RHIC and the LHC. Overall, a good agreement between data and simulation is found. This new framework also allows to identify and quantify the dominant uncertainties in the simulation, and we show some relevant examples for this.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献