Abstract
Abstract
Dark matter produced from thermal freeze-out is typically restricted to have masses above roughly 1 MeV. However, if the couplings are small, the freeze-in mechanism allows for production of dark matter down to keV masses. We consider dark matter coupled to a dark photon that mixes with the photon and dark matter coupled to photons through an electric or magnetic dipole moment. We discuss contributions to the freeze-in production of such dark matter particles from standard model fermion-antifermion annihilation and plasmon decay. We also derive constraints on such dark matter from the cooling of red giant stars and horizontal branch stars, carefully evaluating the thermal processes as well as the bremsstrahlung process that dominates for masses above the plasma frequency. We find that the parameters needed to obtain the observed relic abundance from freeze-in are excluded below a few tens of keV, depending on the value of the dark gauge coupling constant for the dark photon portal model, and below a few keV, depending on the reheating temperature for dark matter with an electric or magnetic dipole moment. While laboratory probes are unlikely to probe these freeze-in scenarios in general, we show that for dark matter with an electric or magnetic dipole moment and for dark matter masses above the reheating temperature, the couplings needed for freeze-in to produce the observed relic abundance can be probed partially by upcoming direct-detection experiments.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference86 articles.
1. P.D. Serpico and G.G. Raffelt, MeV-mass dark matter and primordial nucleosynthesis, Phys. Rev. D 70 (2004) 043526 [astro-ph/0403417] [INSPIRE].
2. C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].
3. D. Green and S. Rajendran, The Cosmology of Sub-MeV Dark Matter, JHEP 10 (2017) 013 [arXiv:1701.08750] [INSPIRE].
4. K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].
5. C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献