Sub-MeV dark matter detection with bilayer graphene

Author:

Das Anirban1ORCID,Jang Jiho1ORCID,Min Hongki11

Affiliation:

1. Seoul National University

Abstract

The light dark matter mass regime has emerged as the next frontier in the direct detection experiment due to the lack of any detection signal in the higher mass range. In this paper, we propose a new detector material, a bilayer stack of graphene to detect sub-MeV dark matter. Its voltage-tunable low energy sub-eV electronic band gap makes it an excellent choice for the detector material of a light dark matter search experiment. We compute its dielectric function using the random phase approximation and estimate the projected sensitivity for sub-MeV dark matter-electron scattering and sub-eV dark matter absorption. We show that a bilayer graphene dark matter detector can have competitive sensitivity as other candidate target materials, like a superconductor, but with a tunable threshold energy in this mass regime. The dark matter scattering rate in bilayer graphene is also characterized by a daily modulation from the rotation of the Earth which may help us mitigate the backgrounds in a future experiment. We also outline a detector design concept and provide noise estimates that can be followed to set up an experiment in the future. Published by the American Physical Society 2024

Funder

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Seoul National University

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3