Author:
Bergère M.,Eynard B.,Marchal O.,Prats-Ferrer A.
Abstract
Abstract
We write the loop equations for the β two-matrix model, and we propose a topological recursion algorithm to solve them, order by order in a small parameter. We find that to leading order, the spectral curve is a “quantum” spectral curve, i.e. it is given by a differential operator (instead of an algebraic equation for the hermitian case). Here, we study the case where that quantum spectral curve is completely degenerate, it satisfies a Bethe ansatz, and the spectral curve is the Baxter TQ relation.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference68 articles.
1. M. Aganagic, M.C. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of Refined Topological Strings, arXiv:1105.0630 [INSPIRE].
2. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys.
91 (2010) 167 [arXiv:0906.3219] [INSPIRE].
3. J. Ambjørn, L. Chekhov, C. Kristjansen and Y. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys.
B 404 (1993) 127 [Erratum ibid.
B 449 (1995) 681] [hep-th/9302014] [INSPIRE].
4. O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems, Cambridge University Press (2003).
5. O. Babelon and D. Talalaev, On the Bethe Ansatz for the Jaynes-Cummings-Gaudin model, J. Stat. Mech-Theory E. (2007) P06013.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献