Author:
Borot Gaëtan,Bouchard Vincent,Chidambaram Nitin K.,Creutzig Thomas
Abstract
AbstractWe identify Whittaker vectors for $$\mathcal {W}^{\textsf{k}}(\mathfrak {g})$$
W
k
(
g
)
-modules with partition functions of higher Airy structures. This implies that Gaiotto vectors, describing the fundamental class in the equivariant cohomology of a suitable compactification of the moduli space of G-bundles over $$\mathbb {P}^2$$
P
2
for G a complex simple Lie group, can be computed by a non-commutative version of the Chekhov–Eynard–Orantin topological recursion. We formulate the connection to higher Airy structures for Gaiotto vectors of type A, B, C, and D, and explicitly construct the topological recursion for type A (at arbitrary level) and type B (at self-dual level). On the physics side, it means that the Nekrasov partition function for pure $$\mathcal {N} = 2$$
N
=
2
four-dimensional supersymmetric gauge theories can be accessed by topological recursion methods.
Funder
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Reference90 articles.
1. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]
2. Alexandrov, A., Chapuy, G., Eynard, B., Harnad, J.: Weighted Hurwitz numbers and topological recursion: an overview. J. Math. Phys. 59(081102) (2018). arXiv:1610.09408 [math-ph]
3. Ambjørn, J., Chekhov, L.O., Makeenko, Yu.: Higher genus correlators from the Hermitian 1-matrix model. Phys. Lett. B 282, 341–348 (1992). arXiv:9203009 [hep-th]
4. Andersen, J.E., Borot, G., Chekhov, L.O., Orantin, N.: The ABCD of topological recursion. Adv. Math. arXiv:1703.03307 [math-ph]
5. Andersen, J.E., Borot, G., Orantin, N.: Geometric recursion (2017). arXiv:1711.04729 [math-ph]
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献