Author:
Botur Michal,Halaš Radomír
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory
Reference16 articles.
1. Botur, M., Halaš, R.: Finite commutative basic algebras are MV-algebras. Mult. Valued Log. Soft Comp. (2007) (in press)
2. Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carol. 44, 577–585 (2003)
3. Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras. Discuss. Math. Gen. Algebra Appl. 24, 31–42 (2004)
4. Chajda, I., Halaš, R.: A basic algebra in an MV-algebra iff it is a BCC-algebra. Int. J. Theor. Phys. (2007) (in press)
5. Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71, 19–33 (2005)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献