Author:
Zhao Shuwen,Yu Yongqiang,Lin Pengfei,Liu Hailong,He Bian,Bao Qing,Guo Yuyang,Hua Lijuan,Chen Kangjun,Wang Xiaowei
Abstract
AbstractThe datasets for the tier-1 Scenario Model Intercomparison Project (ScenarioMIP) experiments from the Chinese Academy of Sciences (CAS) Flexible Global Ocean-Atmosphere-Land System model, finite-volume version 3 (CAS FGOALS-f3-L) are described in this study. ScenarioMIP is one of the core MIP experiments in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Considering future CO2, CH4, N2O and other gases’ concentrations, as well as land use, the design of ScenarioMIP involves eight pathways, including two tiers (tier-1 and tier-2) of priority. Tier-1 includes four combined Shared Socioeconomic Pathways (SSPs) with radiative forcing, i.e., SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5, in which the globally averaged radiative forcing at the top of the atmosphere around the year 2100 is approximately 2.6, 4.5, 7.0 and 8.5 W m−2, respectively. This study provides an introduction to the ScenarioMIP datasets of this model, such as their storage location, sizes, variables, etc. Preliminary analysis indicates that surface air temperatures will increase by about 1.89°C, 3.07°C, 4.06°C and 5.17°C by around 2100 under these four scenarios, respectively. Meanwhile, some other key climate variables, such as sea-ice extension, precipitation, heat content, and sea level rise, also show significant long-term trends associated with the radiative forcing increases. These datasets will help us understand how the climate will change under different anthropogenic and radiative forcings.
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献