Author:
Colombo F.,Sabadini I.,Struppa D. C.,Yger A.
Abstract
AbstractThe notion of supershift generalizes that one of superoscillation and expresses the fact that the sampling of a function in an interval allows to compute the values of the function outside the interval. In a previous paper, we discussed the case in which the sampling of the function is regular and we are considering supershift in a bounded set, while here we investigate how irregularity in the sampling may affect the answer to the question of whether there is any relation between supershift and real analyticity on the whole real line. We show that the restriction to $$\mathbb {R}$$
R
of any entire function displays supershift, whereas the converse is, in general, not true. We conjecture that the converse is true as long as the sampling is regular, we discuss examples in support and we prove that the conjecture is indeed true for periodic functions.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献