Behavioural responses of a cold-water benthivore to loss of oxythermal habitat

Author:

Rodrigues Tazi H.ORCID,Chapelsky Andrew J.,Hrenchuk Lee E.ORCID,Mushet Graham R.ORCID,Chapman Lauren J.ORCID,Blanchfield Paul J.ORCID

Abstract

Abstract Climate-driven declines in oxythermal habitat in freshwater lakes can impose prolonged constraints on cold-water fishes sensitive to hypoxia. How fish cope with severe habitat limitations is not well understood, yet has implications for their persistence. Here, we use acoustic-positioning telemetry to assess seasonal habitat occupancy and activity patterns of lake whitefish (Coregonus clupeaformis), a cold-water benthivore, in a small boreal lake that regularly faces severe oxythermal constraints during summer stratification. During this stratified period, they rarely (< 15% of detections) occupied depths with water temperatures > 10 °C (interquartile range = 5.3–7.9 °C), which resulted in extensive use (> 90% of detections) of water with < 4 mg L−1 dissolved oxygen (DO; interquartile range = 0.3–5.3 mg L−1). Lake whitefish were least active in winter and spring, but much more active in summer, when only a small portion of the lake (1–10%) contained optimal oxythermal habitat (< 10 °C and > 4 mg L−1 DO), showing frequent vertical forays into low DO environments concurrent with extensive lateral movement (7649 m d−1). High rates of lateral movement (8392 m d−1) persisted in the complete absence of optimal oxythermal habitat, but without high rates of vertical forays. We found evidence that lake whitefish are more tolerant of hypoxia (< 2 mg L−1) than previously understood, with some individuals routinely occupying hypoxic habitat in winter (up to 93% of detections) despite the availability of higher DO habitat. The changes in movement patterns across the gradient of habitat availability indicate that the behavioural responses of lake whitefish to unfavourable conditions may lead to changes in foraging efficiency and exposure to physiological stress, with detrimental effects on their persistence.

Funder

Fisheries and Oceans Canada

International Institute for Sustainable Development-Experimental Lakes Area

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3