Seasonal habitat use of white sucker Catostomus commersonii in a small Boreal lake

Author:

Richter Ian A.,Smokorowski Karen E.,Blanchfield Paul J.

Abstract

AbstractWhite sucker (Catostomus commersonii) is a large-bodied benthic fish species that is found across a broad geographic region in North America. Often overlooked, white suckers are an integral component of aquatic ecosystems in their role as the dominant nearshore benthivore in many lakes. Few detailed field investigations on habitat use and thermal occupancy of white sucker exist, limiting our ability to predict the risk of habitat loss from development and climate warming for this cool-water species. Here we investigated seasonal depth, temperature and spatial occupancy patterns of white suckers in a lake located in northern Ontario, Canada. Using a combination of positioning acoustic telemetry and environmental data, we determined depth and space use patterns, seasonal temperature preference indices, and the affinity of white sucker to the lake bottom (i.e., benthic habitat) over a year long period. We found that the white suckers were consistently observed in shallow waters (< 10 m depth) and near the lake bottom across all seasons but were positioned slightly deeper in the winter. The tagged white suckers showed a strong temperature selection preference for thermal habitat between 10 and 16 °C during the open-water seasons and tended to avoid cold (< 6 °C) thermal habitat. Space use patterns, calculated using kernel utilization distributions, and daily movement rates were surprisingly consistent across all seasons, with regular occupancy of only some nearshore areas. This study highlights a highly restrictive pattern of habitat use by white sucker that is consistent across seasons, suggesting that this generalist species may be more vulnerable to anthropogenic disturbance than previously thought.

Funder

Fisheries & Oceans Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3