Abstract
Abstract
Phenotypic plasticity, the ability of an organism to express multiple phenotypes in response to the prevailing environmental conditions without genetic change, may result in a response to anthropogenic environmental change. Given that increasing climate variability is predicted to pose a greater risk than directional climate change, we tested the effect of a water temperature differential of 4 °C on the Arctic charr phenotypic within a single generation. We demonstrate that Arctic charr phenotype can respond rapidly and markedly to an environmental temperature cue. The plastic response to different temperature regimes comprised a shift in the mean expressed phenotype but also coupled with a reduction in the between-individual phenotypic variation in the expressed head shape. The magnitude of shape difference between temperature conditions was cumulative over time but the rate of divergence diminished as fish became larger. Overall, individuals raised in the elevated temperature treatment expressed a phenotype analogous to a benthivorous ecotype of this species, rather than that of the parental pelagic feeding form. The response of cold-water freshwater species to temperature change is likely to be an interaction between the capacity of the organism for phenotypic plasticity, the mean speed of change in the environment, and the degree of short interval variation in the environment.
Funder
Norwegian University of Life Sciences
Publisher
Springer Science and Business Media LLC
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献