Climate change vulnerability of Arctic char across Scandinavia

Author:

Muhlfeld Clint C.1ORCID,Cline Timothy J.2ORCID,Finstad Anders G.34ORCID,Hessen Dag O.5ORCID,Perrin Sam4ORCID,Thaulow Jens6ORCID,Whited Diane7ORCID,Vøllestad Leif Asbjørn5ORCID

Affiliation:

1. U.S. Geological Survey, Northern Rocky Mountain Science Center West Glacier Montana USA

2. Department of Ecology Montana State University Bozeman Montana USA

3. Department of Natural History NTNU University Museum, Norwegian University of Science and Technology Trondheim Norway

4. Gjærevoll Center for Biodiversity Foresight Analyses Norwegian University of Science and Technology Trondheim Norway

5. Department of Biosciences University of Oslo Oslo Norway

6. Formerly Employed at Norwegian Institute for Water Research Oslo Norway

7. Flathead Lake Biological Station University of Montana Polson Montana USA

Abstract

AbstractClimate change is anticipated to cause species to shift their ranges upward and poleward, yet space for tracking suitable habitat conditions may be limited for range‐restricted species at the highest elevations and latitudes of the globe. Consequently, range‐restricted species inhabiting Arctic freshwater ecosystems, where global warming is most pronounced, face the challenge of coping with changing abiotic and biotic conditions or risk extinction. Here, we use an extensive fish community and environmental dataset for 1762 lakes sampled across Scandinavia (mid‐1990s) to evaluate the climate vulnerability of Arctic char (Salvelinus alpinus), the world's most cold‐adapted and northernly distributed freshwater fish. Machine learning models show that abiotic and biotic factors strongly predict the occurrence of Arctic char across the region with an overall accuracy of 89 percent. Arctic char is less likely to occur in lakes with warm summer temperatures, high dissolved organic carbon levels (i.e., browning), and presence of northern pike (Esox lucius). Importantly, climate warming impacts are moderated by habitat (i.e., lake area) and amplified by the presence of competitors and/or predators (i.e., northern pike). Climate warming projections under the RCP8.5 emission scenario indicate that 81% of extant populations are at high risk of extirpation by 2080. Highly vulnerable populations occur across their range, particularly near the southern range limit and at lower elevations, with potential refugia found in some mountainous and coastal regions. Our findings highlight that range shifts may give way to range contractions for this cold‐water specialist, indicating the need for pro‐active conservation and mitigation efforts to avoid the loss of Arctic freshwater biodiversity.

Funder

U.S. Geological Survey

Universitetet i Oslo

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3