Semantic Digital Twins for Retail Logistics

Author:

Kümpel MichaelaORCID,Mueller Christian A.ORCID,Beetz MichaelORCID

Abstract

AbstractAs digitization advances, stationary retail is increasingly enabled to develop novel retail services aiming at enhancing efficiency of business processes ranging from in-store logistics to customer shopping experiences. In contrast to online stores, stationary retail digitization demands for an integration of various data like location information, product information, or semantic information in order to offer services such as customer shopping assistance, product placement recommendations, or robotic store assistance.We introduce the semantic Digital Twin (semDT) as a semantically enhanced virtual representation of a retail store environment, connecting a symbolic knowledge base with a scene graph. The ontology-based symbolic knowledge base incorporates various interchangeable knowledge sources, allowing for complex reasoning tasks that enhance daily processes in retail business. The scene graph provides a realistic 3D model of the store, which is enhanced with semantic information about the store, its shelf layout, and contained products. Thereby, the semDT knowledge base can be reasoned about and visualized and simulated in applications from web to robot systems. The semDT is demonstrated in three use cases showcasing disparate platforms interacting with the semDT: Optimization of product replenishment; customer support using AR applications; retail store visualization, and simulation in a virtual environment.

Funder

Editors

Publisher

Springer International Publishing

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development and Integration of a Digital Twin Model for a Real Hydroelectric Power Plant;Sensors;2024-06-27

2. Interactive E-Learning Environment for Cognitive Robotics;2024 IEEE Global Engineering Education Conference (EDUCON);2024-05-08

3. Digital Twins in Industry: Real-World Applications and Innovations;Transforming Industry using Digital Twin Technology;2024

4. Digital Twins for Supply Chains: Main Functions, Existing Applications, and Research Opportunities;2023 Winter Simulation Conference (WSC);2023-12-10

5. Ontology-Based Digital Twin Framework for Smart Factories;Proceedings of the 31st International Conference on Information Systems Development;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3