1. Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Philip, S.Y.: Active learning: a survey. In: Data Classification: Algorithms and Applications, pp. 571–605. Chapman and Hall/CRC Press (2014). https://doi.org/10.1201/b17320
2. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications. Newnes (2014). https://doi.org/10.1016/C2012-0-00234-7
3. Bates, S., Angelopoulos, A., Lei, L., Malik, J., Jordan, M.: Distribution-free, risk-controlling prediction sets. J. ACM (JACM) 68(6), 1–34 (2021). https://doi.org/10.1145/3478535
4. Bengs, V., Hüllermeier, E., Waegeman, W.: Pitfalls of epistemic uncertainty quantification through loss minimisation. In: Neural Information Processing Systems (2022)
5. Bengs, V., Hüllermeier, E., Waegeman, W.: On second-order scoring rules for epistemic uncertainty quantification. In: Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) Proceedings of the 40th International Conference on Machine Learning, vol. 202, pp. 2078–2091. PMLR (2023)