Publisher
Springer Nature Switzerland
Reference19 articles.
1. Schrijver, C.J., Kauristie, K., Aylward, A.D., et al.: Understanding space weather to shield society: a global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 55(12), 2745–2807 (2015)
2. Wang, J., Yu, Q., Shi, Y., Liu, Y., Yang, C.: An explainable dynamic prediction method for ionospheric foF2 based on machine learning. Remote Sens. 15, 1256 (2023). https://doi.org/10.3390/rs15051256
3. Kumar, V.V., Parkinson, M.L.: A global scale picture of ionospheric peak electron density changes during geomagnetic storms. Space Weather 15, 637–652 (2017). https://doi.org/10.1002/2016SW001573
4. Natras, R., Soja, B., Schmidt, M.: Ensemble machine learning of Random Forest, AdaBoost and XGBoost for vertical total electron content forecasting. Remote Sens. 14, 3547 (2022). https://doi.org/10.3390/rs14153547
5. Boulch, A., Cherrier, N., Castaings T.: Ionospheric activity prediction using convolutional recurrent neural networks, pp. 1–10. arXiv:1810.1327312 [cs.CV], 6 November 2018. https://doi.org/10.48550/arXiv.1810.13273