Acoustic Anomaly Detection Using Convolutional Autoencoders in Industrial Processes
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-20055-8_41
Reference18 articles.
1. Salamon, J., Bello, J.P.: Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Process. Lett. 24(3), 279–283 (2017). https://doi.org/10.1109/LSP.2017.2657381
2. Chou, P.H., Wu, M.J., Chen, K.K.: Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system. Expert Syst. Appl. 37(6), 4413–4424 (2010). https://doi.org/10.1016/j.eswa.2009.11.087
3. Cariño-Corrales, J.A., Saucedo-Dorantes, J.J., Zurita-Millán, D., Delgado-Prieto, M., Ortega-Redondo, J.A., Alfredo Osornio-Rios, R., de Jesus Romero-Troncoso, R.: Vibration-based adaptive novelty detection method for monitoring faults in a kinematic chain. Shock Vibr. 2016, 1–12 (2016). https://doi.org/10.1155/2016/2417856
4. Carino, J.A., Delgado-Prieto, M., Zurita, D., Millan, M., Redondo, J.A.O., Romero-Troncoso, R.: Enhanced industrial machinery condition monitoring methodology based on novelty detection and multi-modal analysis. IEEE Access 4, 7594–7604 (2016). https://doi.org/10.1109/ACCESS.2016.2619382
5. Narayanan, V., Bobba, R.B.: Learning based anomaly detection for industrial arm applications. In: Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, pp. 13–23. ACM (2018). https://doi.org/10.1145/3264888.3264894
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimisation of Anomaly Detection in Video Processing Using Efficient Feature Engineering;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05
2. Acoustic Anomaly Detection of Machinery using Autoencoder based Deep Learning;2024 32nd Southern African Universities Power Engineering Conference (SAUPEC);2024-01-24
3. Enhancing Sound-Based Anomaly Detection Using Deep Denoising Autoencoder;IEEE Access;2024
4. Designing a Deep Autoencoder Neural Network for Detecting Sound Anomalies in Smart Factories Using Unsupervised Learning;BIO Web of Conferences;2024
5. Autoencoder-Based Unsupervised Anomaly Detection in Induction Motors Diagnosis;2023 IEEE 11th International Conference on Systems and Control (ICSC);2023-12-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3